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1. Introduction 2. Experimental Method
The Interstellar media is a low temperature (<100K) vacuum, Converging Diverging Nozzle profiles |Pulsed CRESU Method is used to obtain a low temper- |[Impact pressure measurements taken using pitot tube
comprised of gas and dust. The ISM contains upwards of 450 for a particular temperature and ature jet for kinetic measurements and converted to temperature and Mach number using

species have which are involved in 6000+ gas phase reactions. | |bath gas are designed using MOC: Rayleigh-pitot equation and adiabatic relationships:

Some reactions have been suggested to be pathways to com-
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plex organic molecules (COM'’s), potential precursors to life.
Experimentally, low temperatures are obtained by expanding a

gas through a Laval nozzle to form a supersonic jet where reac-

tions take place. The flow is characterised using the pitot tube | Profi
Axial Profile

method and Rayleigh —pitot equations. Nozzles are designed
using the method of characteristics (MOC) . The MOC assumes
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the flow is irrotational and inviscid, which is not representative o e | lagrshon preseirs . e . + Pslip = 1.20
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of the actual supersonic jet as it contains a turbulent mixing sii] | - " + Pslip = 1.48
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layer, and also provides no indication of flow length. These Figure 1. Mach 2.25 Nitrogen Nozzle
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methods are time consuming, low fidelity and complex to set-
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One nozzle and set of conditions is | Pulse

up, hence the use of CFD and optimisation could improve . . - Width . — 8 o} )
L : designed to obtain a specific temper- 0.04 0 . :
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3. Numerical Method

The Compressible Favre Averaged Navier Stokes (FANS) equations with an ide- | |These results show comparisons be-
: : : : M2.25N2 -P__=5222Pa,P__ =170Pa M2.25N2 -P__=5222Pa,P__ =170Pa
al gas equation of state and Menter k-w-SST eddy viscosity turbulence model | [tween freestream CFD and experi- - , res . o , res ol M
: : : Experimental (Birmingham) — Experimental (Leeds)
was used to model this system. ments across the jet axis for the same ol sl i L | s it
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0.31 | | v The inclusion of a pitot tube causes a phenomenon known as the displacement effect. This shifts the entire profile forward, hence this
could suggest why the results at Birmingham are displaced forward in comparison to the CFD. Furthermore, the pitot tube can cause an
5. ACRE MATLAB Framework over prediction of Mach number (under prediction of temperature), which is dependent on the pitot tube size and flow location.
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6. Future Work—Design Optimisation

Design Optimisation will be applied to the CD nozzle, where the objective

function will be to minimise the oscillations in the flow and to maximise flow Supersonic
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length. The nozzle geometry will be controlled using a freeform approach, us-

ing NURBS, which is commonly used in the aerospace industry:
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Once the metamodel is obtained, an optimiser can be applied to obtain the

optimal design based on the objective functions. )
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