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o Articular cartilage (AC) is found at opposing
surfaces in mammalian joints. It provides a
smooth bearing surface, promoting low friction
articulation, facilitating continuous operation
under relative motion.

o A lack of cells within AC renders a low capacity
for intrinsic healing or repair, leaving it prone to
degeneration.

o High clinical demand for cartilage repair, with
8.75 million people aged 45 and over having
sought treatment for osteoarthritis (a disease
developed when cartilage breaks down) in the
UK [1]. Which is predicted to cost the NHS
around £118.6 billion in the next decade [2].

o Despite this, a lack of understanding of the
tissue renders successful repair techniques
elusive.
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o AC has a biphasic structure, with a deformable matrix of collagen, immersed in an interstitial fluid. The complex tissue Project Aim
composition spans a range of length scales (Fig.1).

Couple an immersed fibre network (micro-scale)
model with a poroelastic continuum mechanical
(macro-scale) model to create a novel multi-scale
model of articular cartilage and its mechanical
response.

o The micro-structure of the tissue contains a collagenous network of cells with variable permeability across a stratified

composition.
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o Refine computational set up to create an
Fig.1: Multi-scale structure of AC (adapted from [3]). efficient, accurate multi-scale solver.

Objectives:

o Current single-scale constitutive models do not capture the physical interactions at both the fibre and material scale.
o Complexify the model to incorporate a stratified

composition and damage modelling to improve
clinical understanding of damaged tissue.

o Validate model against controlled experiments
_ using bovine and human (subject to ethics)
| cartilage.

o This project aims to create a coupling between the micro- and macro-scales to map the pore-scale effects onto the

material-scale response.
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Graphic taken from [4].
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o Multi-scale model uses COMSOL-MATLAB Live Link. Micro- and Macro- o Current multi-scale continuum-continuum model has been validated
scales coupled using Heterogeneous Multi-scale Methods. against a single scale model (e.g. Fig 3a). o Increasing model complexity will require computational optimization.

o Currently, the continuum-continuum macro-scale model undergoes a 1D,
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o Meta-modelling, for example GPTIPS is being explored to speed up multi-
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unconfined compression in the negative y-direction (Fig2a). e — sz scale model simulations.
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Fig.2a: 2D compression Fig.2b: Resulting solid, fluid and material response . . . . . . . [1] Christopher J.L. Murray et al. “UK health performance: Findings of the Global Burden
o Experimental ;ompressmn and mdentahon testing of cartilage samples will' <5 .o Study 2010”. DOI 10.1016/50140-6736(13)60355-4.
o Next, include fibrous network micro-scale model using extensional shear. be used to validate the model (Fig 3b). [2] Versus Arthritis. (n.d.). The State of Musculoskeletal Health 2021. [online] Available at:

https:// [Accessed 20 Jun. 2022].

o Replace continuum solid with a bond-diluted triangular spring network. o Atomic Force Microscopy to understand the fibre-structure of the tissue [3] Wang, X., Neu, C.P. and Pierce, D.M., 2019. Advances toward multiscale computational

models of cartilage mechanics and mechanobiology. Current Opinion in Biomedical

for validation and improvement of the fibre-model R
Engineering, 11, pp.51-57/.

o Challenges: fibre model is inherently oscillatory, calculating non-constant [4] Fox, A.S. and Bedi, A., 2009. ja SA Rodeo. The basic science of articular cartilage:

parameters, e.g. the Biot Willis coefficient.



