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Clinical Background
o Articular cartilage (AC) is found at opposing 

surfaces in mammalian joints. It provides a 
smooth bearing surface, promoting low friction 
articulation, facilitating continuous operation 
under relative motion. 

o A lack of cells within AC renders a low capacity 
for intrinsic healing or repair, leaving it prone to 
degeneration.

o High clinical demand for cartilage repair, with 
8.75 million people aged 45 and over having 
sought treatment for osteoarthritis (a disease 
developed when cartilage breaks down) in the 
UK [1]. Which is predicted to cost the NHS 
around £118.6 billion in the next decade [2].

o Despite this, a lack of understanding of the 
tissue renders successful repair techniques 
elusive. 

Project Aim

Couple an immersed fibre network (micro-scale) 
model with a poroelastic continuum mechanical 
(macro-scale) model to create a novel multi-scale 
model of articular cartilage and its mechanical 
response.

Objectives: 

o Refine computational set up to create an 
efficient, accurate multi-scale solver.

o Complexify the model to incorporate a stratified 
composition and damage modelling  to improve 
clinical understanding of damaged tissue.

o Validate model against controlled experiments 
using bovine and human (subject to ethics) 
cartilage.

o Increasing model complexity will require computational optimization.

o Meta-modelling, for example GPTIPS is being explored to speed up multi-
scale model simulations.

o Machine Learning implemented to select the most pertinent data points.

o Model efficiency will be improved with efficient data storage.
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o Current multi-scale continuum-continuum model has been validated 
against a single scale model (e.g. Fig 3a).

o Experimental compression and indentation testing of cartilage samples will 
be used to validate the model (Fig 3b).

o Atomic Force Microscopy to understand the fibre-structure of the tissue 
for validation and improvement of the fibre-model

o Clinical Collaboration will be used to optimize a biological model (Fig 3c).

Scientific Aims and ObjectivesModelling Articular Cartilage
o AC has a biphasic structure, with a deformable matrix of collagen, immersed in an interstitial fluid. The complex tissue 

composition spans a range of length scales (Fig.1).

o The micro-structure of the tissue contains a collagenous network of cells with variable permeability across a stratified 
composition. 

o Current single-scale constitutive models do not capture the physical interactions at both the fibre and material scale.

o This project aims to create a coupling between the micro- and macro-scales to map the pore-scale effects onto the 
material-scale response.

o Multi-scale model uses COMSOL-MATLAB Live Link. Micro- and Macro-
scales coupled using Heterogeneous Multi-scale Methods.

o Currently, the continuum-continuum macro-scale model undergoes a 1D, 
unconfined compression in the negative y-direction (Fig2a). 

o Next, include fibrous network micro-scale model using extensional shear.

o Replace continuum solid with a bond-diluted triangular spring network.

o Challenges: fibre model is inherently oscillatory, calculating non-constant 
parameters, e.g. the Biot Willis coefficient.
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Fig.1: Multi-scale structure of AC (adapted from [3]).

Fig.2a: 2D compression Fig.2b: Resulting solid, fluid and material response
Fig.3 Types of validation for the multi-scale model.
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