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Figure 3: RBC plasma analogy

Figure 4:  Real and imaginary parts of the roots 𝑠 of (7) for a range of 𝑄 and 𝑘𝑦 values. 
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Fusion is a process of combining light elements to form heavier elements with an 
associated release of energy. Isotopes of hydrogen can be fused to form helium. 
For the elements to have enough energy to fuse they need to be at a temperature 
of 150 million °C.  To contain plasma at such high temperatures it is suspended in 
a magnetic field created by a system of magnets in a tokamak (Figure 1). Owing to 
to turbulence in the plasma, confinement can be lost resulting in hot plasma 
making contact with the walls of the reactor and causing damage. This is an issue 
which must be resolved if we want fusion reactors that can generate power. 
These turbulent plasma ejections occur in the scape off layer (SOL), a thin layer of 
plasma making up the surface of the confined torus volume of plasma (Figure 2).

As shown in Figure 3, the plasma system can be regarded as analogous to Rayleigh–Bénard
convection (RBC), where we consider a density gradient across the SOL. The effective gravity term 
“𝑔” acts in the radial direction and models the curvature and gradient of the magnetic field. The 
dynamics of the plasma in our model are governed by the vorticity equation, particle density 
equation and Ohm’s law given by,
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where 𝑚𝑖 is the mass of the ions, 𝑛 is the plasma particle density, 𝒗𝐸 is the velocity with which 
particles drift from confinement due to the Lorentz force, 𝑐𝑠 is the plasma sound speed, Ωi is the 
ion gyrofrequency, 𝐷 is the collisional diffusion constant, 𝐴∥ is the parallel component of the 
magnetic potential, 𝜑 is the electric potential, 𝜎∥ is the parallel component of the conductivity, 𝑇𝑒 is 
the electron temperature, 𝜇0 is permeability of free space and 𝑒 is the elementary charge.
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By introducing a small perturbation 
into the basic state (tilde variables) 
of equations (1-3) and retaining 
only linear terms, we obtain (4-6). 
Here we have non-dimensionalised 
the equations and introduced the
following non-dimensional variables: the effective Rayleigh number, 𝑅𝑎∗ = 𝑔ℎ3/𝐷𝜈𝑖; the 
Prandtl number, 𝑃𝑟 = 𝜈𝑖/𝐷; the Chandrasekhar number, 𝑄 = 𝐵2ℎ2𝜎∥/𝑛0𝜈𝑖𝑚𝑖; the ratio of 
the gyrofrequency to the time scale of diffusion, Ω = Ω𝑖ℎ

2/𝐷, the scaled ratio of the SOL 
widths to the tokamak radius of curvature, 𝜆 = 2ℎ/𝑅𝑐 and the ratio of the magnetic 
diffusivity to collisional diffusion, 𝜁 = 𝜂/𝐷.

To analyse the stability of (4-6) we start with a small density 
gradient approximation, 𝑛 𝑥 = 1, 𝑑 𝑛/𝑑𝑥 = constant, thus 
neglecting the 𝑥 dependence. We postulate plane wave 
solutions of the form,  𝜑 = ො𝜑sin 𝑚𝜋𝑥 exp 𝑠𝑡 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧 . 

Where 𝑚 is an integer, 𝑘𝑦 and 𝑘𝑧 are the wavenumbers in 

the poloidal and toroidal directions and 𝑠 is the complex 
growth rate. If Re(𝑠) is negative this represents a stable 
state, and if positive an unstable state. Re(𝑠) = 0 denotes a 
marginal state on the onset of instability. Solving (4-6) with 
our approximation, where we also have 𝑄 = 𝑄𝑘𝑧

2,  yields,

5. Preliminary Results and Future Work
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In Figure 4 we have plotted Re(𝑠) and Im(𝑠) of (7) for a range of 𝑄 and 𝑘𝑦 values with 𝑅𝑎∗ = 108, 𝑃𝑟 = 1, Ω = 105, 𝜆 = 0.04,

𝜁 = 10−2, Δ𝑁 = 0.0241. The third root has a clear region of instability. We will continue this investigation in the linear regime, first by 
a thorough investigation of parameter space for the simplified model, then by dropping the small gradient approximation. Our ultimate 
goal will be to consider the nonlinear evolution governed by (1-3).
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